List of Dissertation Abstract (Dissertation Doctor)

Name	Supervisor	Title	Abstract
Suzuki Yoshihiro	Nakai Satoshi	Development of passive sampler with forced airflow function (semi-active sampler) - Modeling of VOC collection based on mass transfer theory and its application -	A new sampler, the semi-active sampler (SAS), was designed, developed, and examined to address the problems of passive air samplers (PAS). The semi-active sampler (SAS), equipped with a forced air flow function for the passive sampler (PAS), was developed based on the mass transfer theory and can be used in environments with a lower airflow than the conventional PAS in collecting toluene, ethylbenzene, and xylene. The SAS can also collect SVOCs (nicotine), which have weak diffusion ability, faster than the PAS by using direct collection materials. Further investigation of more substances is required as a future challenge.
OGAWA Keiko	ANDO Takatoshi	The midwifery training system and the actual practice of midwives with the Home Ministry issued license during the Meiji Period —A comparison between the cases in Tokyo and Kanagawa prefectures—	The major findings of this study concern the education and actual practice of certified midwives with the Home-Ministry issued license during the Meiji period, focused on the examples from Tokyo and Kanagawa Prefectures. In Tokyo Prefecture, nine midwife schools, other than the Tokyo Prefecture Hospital Midwife School, were established. Midwives with a Home-Ministry issued license helped establish and operated two midwife associations in Tokyo Prefecture. Both associations held lecture meetings regularly and their rivalry contributed to their further efforts for professional improvement. The midwife education for certified midwives with the Home-Ministry issued license in Kanagawa Prefecture included insomuch as the use of obstetric instruments. These midwives practiced in many different areas of Kanagawa prefecture, and they played a significant role in protecting the health and lives of mothers and their children.

Imai Noriyasu	Ogata	Study on the verification of	There has been an increased demand to eliminate animal
	Shinich	between laboratory reproducibility	tests for assessing the safety of cosmetics. The SH test is
		and the improvement of the test	an in vitro skin sensitization test that evaluates the protein
		method of the SH test as an <i>in</i>	binding abilities of a test substance. The between-facility
			reproducibility and validity of SH test have not been
		<i>vitro</i> skin sensitization test	performed. Therefore, to verify the transferability and the
			between-facilities reproducibility of the SH test, we carried
			out the SH test at three facilities, including the development
			facility, and evaluated 25 substances. After an initial round
			of testing, the protocol was refined as follows: i) determine
			the optimum pH range, ii) change the maximum applicable
			concentration of water-soluble substances, and iii) define
			the appropriate dispersion conditions for evaluating
			hydrophobic substances. These refinements markedly
			enhanced the between-facility reproducibility for the 25
			substances evaluated in this study. Moreover, we
			successfully improved the operational efficiency and clarify
			of the final judgment of the SH test by (i) developing a new
			decision-making system without statistical processing, (ii)
			maximum number of repetitions. The improved SH test was
			verified by comparing it with existing test methods already
			adopted by the OFCD. Those results suggest excellent
			performance of the improved SH test with high
			reproducibility reliable predictability and good operational
			efficiency. The results of this study are expected to improve
			the reliability of the SH test and promote to apply in
			companies. I expect that the results of this research will
			improve the reliability of SH test and promote its use in
			companies and other organizations, thereby contributing to
			the spread of alternative methods for animal testing and the
			formation of a society that does not depend on the sacrifice
			of laboratory animals.

Osugi	Matsuda	A study of fish ecology adapted to	River ecosystems are subject to various flow regimes
Tomonori	Hirovuki	river flow fluctuations and	(fluctuations in flow due to runoff), both large and small,
Tomonom	Throyan		such as floods, and the river habitat, which is the foundation
		methods to improve the impact on	of the river backwater structure, is greatly affected by these
		downstream rivers of flow	fluctuations. One of these is the change in foraging behavior
		regulation by dams	of fish during high water. Even the benthic goby, the reef
			come downstream during periods of high water as if it were
			a swimming fish and stomach filling has been observed to
			increase. Thus, organisms are adapted to flow fluctuations
			such as outflows in rivers, and it is suggested that dam
			construction may reduce the scale and frequency of natural
			outflows and affect the river ecosystem, such as the foraging
			behavior of fish adapted to outflows.Dam projects are public
			works projects that are indispensable for human life, such as
			flood control and water supply for irrigation. However, it has
			been believed that the manipulation of river flow regimes
			alters natural flow fluctuations, and the river ecosystems
			downstream of dams are greatly affected. In fact, it has been
			pointed out that the flood control and water utilization
			tunctions of dams cause a reduction in the peak flow rate
			and changes in water quality, and the effects of these
			environmental changes on the babitat conditions of benthic
			animals and other riverine organisms have been confirmed
			To determine the extent to which the impact of such dam
			projects is actually manifested, the Ministry of Land,
			Infrastructure, Transport and Tourism is conducting a
			census of the river waterfront and monitoring the impact by
			comparing benthic animals and other organisms upstream
			and downstream of the dam.However, there is little
			knowledge on surveys that have identified actual
			environmental changes in the river downstream of a dam
			even before the dam is completed. Therefore, in order to
			understand the actual impact of the dam project on the river

environment downstream of the dam, a survey on the actual
changes in the environment and benthic animals was
conducted continuously from before to after the dam was
flooded at the Hinachi Dam located in Nabari City, Mie
Prefecture. The results showed that the dam flooding
caused environmental changes such as a reduction in the
peak flow rate when the water level increased, coarsening of
the riverbed due to the cessation of sediment supply, an
increase in the amount of plankton in the stream, and a
decrease in the amount of organic matter deposited
In 1997 the River Law was revised and "preservation of the
river environment" was positioned as one of the objectives
of river management, and rivers are required to function as
habitate for a variety of organisms. Therefore, dam projects
are required to develop dam management methods to
are required to develop dain management methods to
preserve river functions that are desirable for riving
organisms. Therefore, as one of the methods to improve the
environment downstream of a dam, which is affected by the
dam, flash flooding, in which water is released from the dam
to artificially cause flooding and promote the renewal of
riverbed materials, has been attracting attention. This
method was planned in Japan based on the artificial flood
experiment conducted in 1996 at Glen Canyon Dam on the
Colorado River in the United States and pulse discharge
downstream of dams in Switzerland and other EU countries.
In implementing this flash discharge, a study was conducted
on the effect of improving the river environment downstream
of the dam by securing a part of the flood control capacity
for environmental discharge as a device of the current dam
operation method, and on the improvement method by
elastic management of the dam that releases water to
improve the river environment downstream of the dam, such
as flash discharge. It was confirmed that the flash discharge
swept away silt such as stagnant water and detached
attached algae. These results were compiled into a manual

for implementing flexible management and flexible discharge
for implementing nextble management and hash discharge
at dams under the jurisdiction of the Ministry of Land,
Infrastructure, Transport, and Tourism (MLIT), which
includes a method for studying effective flash discharge and
maintenance flow discharge and a survey method for
verifying effectiveness.Based on this manual, environmental
improvement downstream of dams using flash flood
discharge and other methods has been implemented at
dams under direct control nationwide. However, the method
of improving the river environment downstream of dams
using flash flood discharge only addresses the impact of
flow regulation, and does not take into account the impact of
interception of sediment supply by dams, which is another
issue to be addressed. As a future prospect, it is thought
that the combination of flash flood discharge and sediment
reduction will enable more effective improvement of the river
environment downstream of dams. For these methods, we
examined the combination method of flash discharge and
sediment reduction, and proposed a more effective method
of improving the river environment downstream of dams.