Name	Supervisor	Title	Abstract
Kobayashi Tatsuaki	Nagao Tomoharu	A Study on Explainability in Extracting Biological Features from Medical Images Based on Machine Learning	Computer-aided diagnosis (CAD) and Radiomics are data science tools that use medical images. Products produced from CAD and Radiomics have the potential to contribute to diagnostic decision support and improve the efficiency of the treatment process and are expected to have further applications. On the other hand, there has been a growing demand not only for the accuracy of models but also for the ability of models to provide evidence acceptable to healthcare professionals and patients, i.e., explainability. Therefore, this paper reports the validation results of machine learning-based biological feature extraction for the classification of medical images in the pursuit of better classification accuracy and explainability.
Eom Seungjae	Ozeki Kenta	Structures related to edge-coloring in 3- or 4-regular graphs	In this thesis, we focus on 3- or 4- regular graphs of Class 2. For a 4-regular graph, we study the hierarchy of the family of 4-regular graphs of Class 2, in the view of a 2- factor. For a 3-regular graph, we study a bisection on the regular graphs. Cui and Liu showed that if G is a claw-free cubic graph, G has a 2-bisection. In this thesis, we will improve their result using the number of monochromatic edges in a 2-bisection, where monochromatic edges are one connecting two vertices of the same part of the 2- bisection.

List of Dissertation Abstract (Department of Information Environment)

Uchida Kento	Shirakawa	A Study on Convergence Analysis	Since the performance of evolution strategies is affected
	Shinichi	and Performance Improvement of	by the hyperparameter setting, the condition to ensure the
		Continuous Black-Box	search performance has been investigated theoretically
		Optimization Using Gaussian	and experimentally. However, existing theoretical analyses
		Distribution	have relaxed their difficulties by considering unrealistic
			situations, such as an infinite sample size. From the
			experimental aspect, the recommended hyperparameter
			setting has been pursued using well-tuned testbeds.
			However, the testbeds do not consider some properties,
			such as low effective dimensionality (LED), that appeared
			in real-world applications. This study shows theoretical
			analyses of evolution strategies under realistic situations
			and an improvement of covariance matrix adaptation
			evolution strategy for functions with LED.
Ohashi Ryo	Harashita	The a -numbers, superspeciality	In this paper, we considered three families of genus-3
	Shushi	and maximality of genus-3 curves	curves, and examined the a -numbers, superspeciality and
			maximality of them. One of our main theorems is that we
			found a family of curves which satisfies the following
			property: If a curve is nonsingular and superspecial, then
			it is maximal or minimal over \mathbb{F}_{p^2} . Moreover, we gave a
			condition to judge whether the curve is maximal or
			minimal. We think that this result is useful as an efficient
			way to generate maximal genus-3 curves explicitly.