List of Dissertation Abstract (Department of Information Environment)

Name	Supervisor	Title	Abstract
ABE Toshiki	OZEKI Kenta	Colorings and dominating sets of graphs on surfaces	A coloring of a graph is the mapping from the vertex set to positive integer so that no two adjacent vertices receive the same colors and the chromatic number is the minimum cardinality needed to color the vertices of the graph. In this thesis, we evaluate chromatic numbers and analogical ones for planar graphs and near planar graphs and we solve List Coloring Conjecture partially, which is still an open problem. Moreover, we evaluate the domination number of planar graphs by using a coloring method.

UEMURA	TOMII Takashi	An Energy Consumption Database	In this research, we constructed an Electric Vehicle
Toshiaki		of Electric Vehicle Utilizing	(EV) energy consumption database using vehicle
		Vehicle Driving Logs	driving logs. By collecting the sensor data of the
			vehicles currently drive by the users and estimating
			the energy consumption of EVs, our system predicts
			the "energy consumption in the future when users
			change their car from Internal Combustion Vehicles
			to EVs. In this paper, we showed practical examples
			of the useful use of the data about EV's energy
			consumption obtained from the database to
			demonstrate problems specific to EVs can be solved
			by using vehicle driving logs.

ENAMI Kengo NEGAMI Seiya Re-embedd	ing structures of We study topological graph theory and hence deal
graphs on s	urfaces and related with embeddings of graphs on surfaces. Since a
topics for g	aph colorings graph may not have only one embedding on an
	embeddable surface, the following two questions
	attracted many topological graph theorists: (1) How
	many (distinct) embeddings on a surface does a
	graph have? (2) What kind of structures generate
	these embeddings of the graph? We often call such a
	structure the re-embedding structure and call the
	topic about these questions re-embedding theory. We
	hono that this thosis can contribute to development
	nope that this thesis can contribute to development
	of re-embedding theory.
KANEI MATSUMOTO A Study on	Analysis of Threats I propose a framework that prevents threats of
Fumihiro Tsutomu that Prever	t Use and Distribution fraudulent monetization caused by tampering of
of Secure M	lobile Applications Android apps. The proposed framework increases the
	cost of attacks by making automated tampering of
	Android apps more difficult, while reducing the
	benefits of attacks by performing ad fraud detection
	that is difficult to avoid. This makes attacker's
	fraudulent monetization of app tampering inefficient
	and forces them to discontinue their attacks

KOIDE Takashi	MATSUMOTO	A Study on Analyzing Cyber	This thesis focuses on cyber attacks against many
	Tsutomu	Attacks through Active and	and unspecified users or devices, which affect a
		Passive Observation	wider range of users. Current existing
			countermeasures are effective against individual
			attacks, but reactive and limited to these attack
			techniques. These countermeasures will not respond
			to changes in attack techniques and the evolution of
			devices in the future. In this thesis, we propose
			methods for observing cyber attacks targeting many
			and unspecified users and devices on the Internet by
			combining passive and active observation. Correlation
			analysis of the observation from two perspectives
			allows us for a faster and more comprehensive
			collection of cyber attacks in the wild.

1			
KOBAYASHI	NAGAO	A Study on Improving the	Although machine learning techniques have received
Masayuki	Tomoharu	Interpretability of Image	considerable attention and demonstrated outstanding
		Classification Models	performance, their uninterpretable nature is still
			considered to be a major problem. This black-box
			nature leaves only two questions: why and how did
			they reach their decision? Therefore, it is important
			to review work on machine learning interpretability. In
			this study, we take a closer look at model
			interpretability and propose methods that can
			achieve reasonable performance while maintaining
			high interpretability. To this end, we propose methods
			for designing more interpretable training methods,
			gaining an insight into how model works, and learning
			more interpretable models.

HIGUCHI	HARASHITA	On the boundary components of	In algebraic geometry and number theory, p-divisible
Nobuhiro	Shushi	central streams and determining	groups are important research objects. For the
		their Newton polygons	universal family of p-divisible groups, its base
			scheme canonically has structures of a foliation and
			stratifications. In this research, we treat the most
			important leaf of the foliation: central streams. The
			central stream is determined by a line graph which is
			called a Newton polygon, and it is defined as the
			locus the fibers over which are minimal p-divisible
			groups with the Newton polygon. In this paper, we
			classify the boundary components of central streams
			and determine their Newton polygons, which was an
			unresolved problem.

MAEZAWA	OZEKI Kenta	Connected subgraphs with certain	A Hamilton path is a path containing the all vertices
Shunichi		properties in dense graphs	of a graph and a spanning tree is a tree containing
			the all vertices of a graph. Degree conditions and
			forbidden subgraph conditions for a sufficient
			condition of the existence of a Hamilton path have
			been studied. Graphs satisfying these conditions tend
			to have many edges compared with the number of
			vertices. Such graphs are called dense graphs. We
			show degree conditions and forbidden subgraph
			conditions for the existence of spanning subgraphs
			that are extended concepts of a Hamilton path, for
			example, a spanning tree with bounded maximum
			degree and a spanning tree with bounded total
			number of branch vertices and leaves.